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Abstract
The convective flow in vertical cylindrical tubes is investigated and a new
formula for its velocity is derived. The Ostroumov problem is briefly discussed,
and the relevant fourth-order ordinary differential equation referring to this
problem is solved directly in its complete form and within a frame of an
allowed simplification, as well. The result obtained for the velocity function is
in good qualitative agreement with earlier simulation calculations.

PACS number: 44.30+v

1. Introduction

As is obvious, the investigation of convection phenomena represents nowadays one of the
important research topics in both the fundamental hydrodynamics and related engineering
areas [1–3]. The convection phenomena appear sometimes in flow patterns of symmetric
forms (e.g. in case of the Rayleigh–Bènard instability [4, 5]). They can be treated adequately
within the framework of general fluctuation theory of phase transitions [6]. These types of
phenomena set up attractive examples of convection flows, which are unsolved problems of
hydrodynamics. There are some other appearances of the convective flow patterns, creating
an equally interesting point of view of fundamental research, as well as from engineering
applications of them. One of them is a problem studied by Ostroumov [7, 3] related to
the examination of convection instability threshold in vertical tubes. The mathematical
modelling of these phenomena is an actual research topic [2, 8, 9] having some direct
technical applications too. Among them, modelling of flow characteristics of different
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technical equipments [8] represents demonstrative examples. Furthermore, study of influence
of rough surface (through turbulent boundary layer phenomena) on a heat flux at the turbulent
convective flow was possible [9] by use of particular-type special functions, namely the
Lambert-W functions [10] and calculations by using a symbolic computer algebra system
MAPLE.

Therefore, applications of advanced software packages make possible realization of
symbolic computational model experiments so as to understand the character of such flows. In
the present work, a new approach is shown in order to approximately determine the functions
of velocity and temperature distribution in vertical tubes having cylindrical symmetry and
insulating walls.

2. General formalism of the convection phenomena

According to the classical descriptions of free convection [3] it is supposed that changes of
fluid density ρ caused by temperature variations lead to the appearance of convective driving
forces, while fluid density changes due to the variations of pressure p are negligible (i.e. the
very high vertical fluid columns are excluded from consideration). The Boussinesq system
of partial differential equations (PDEs) is relevant for describing the velocity function �v of
stationary convection:

(�v · ∇)�v = −∇ p

ρ
− �g · β · T +

η

ρ
∇2�v,

�v · ∇T = χ · ∇2T , ∇ · �v = 0,

(1)

where β denotes compressibility, η is the dynamic viscosity coefficient, �g is the gravitational
acceleration, T is the temperature and χ denotes the heat propagation coefficient. This
well-known system of PDEs can be derived directly from the basic balance equations of non-
equilibrium thermodynamics [3], and transformed into a concise form after general discussion
of the ordinary problem of convective instabilities mentioned above. This transformation leads
to a fourth-order linear partial differential equation, i.e.,

�2v = Ra

R4
v,

(
Ra ≡ CR4gβρ

χη
,� ≡ ∇2

)
, (2)

where Ra is the Rayleigh number (this important parameter is playing a decisive role in
description of convective phenomena). It can be represented as a product of the Grashof, and
Prandtl numbers, i.e. Ra = Gr ·Pr, and the latter is also a well-known dimensionless quantity:
Pr = η

χ ·ρ , R is the radius of the cylinder, C is the vertical temperature gradient of a constant

value, while the Laplacian operator � ≡ ∇2 (as well as its quadratic form) is usually given in
cylindrical coordinates at solving of this problem. Another important relationship emanating
from the same classical theoretical description of the convection problem is the following:

χ�τ = −Cv, (3)

where τ denotes the temperature perturbation, which may cause convection instability.
Although equations (2) and (3) have been studied many times [3, 7], we thought that it
would be useful to examine this problem again and remodel its main features in a novel
manner basing our work on the powerful, new and symbolic calculation techniques.

The calculations were performed entirely by use of the MAPLE [11] and
MATHEMATICA [12] computer software packages, and it is shown that neither the application
of Bessel functions (with both real and imaginary arguments) [3], nor the use of the Fourier
series expansion technique (with respect to the spanwise aspect ratio—used e.g. in [8]) are
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necessary for studying the velocity fields in such tubes described basically by the fourth-order
partial differential equation (2).

3. Results and discussion

Firstly, we solved the radial part of PDE (2) directly. Taking into account cylindrical symmetry
of the problem, for calculating the velocity function in the cross section of the vertical tube,
it is natural to use polar coordinates (r, ϕ)instead of rectangular ones (x, y). Here r denotes
the radial distance from the axis of cylinder, i.e. 0 � r � R. By fixing the value of the
angle ϕ (and modifying therefore the square of the planar Laplacian operator expressed in
polar coordinates), we arrive at the following simplified ordinary differential equation (ODE))
originated from PDE (2):

d4

dr4
v +

2

r
· d3

dr3
v − 1

r2
· d2

dr2
v +

1

r3
· d

dr
v = av, (4)

whose solution is (by application of the MATHEMATICA 5.2 symbolic computer program)

v(r) = i

8
C1 · {I0(

4
√

ar) − J0(
4
√

ar)} +
1

2
C2{I0(

4
√

ar) + J0(
4
√

ar)}

+ C3 · G
2,0
0,4

[
ar4

256

∣∣∣∣0, 0,
1

2
,

1

2

]
+ C4 · G

2,0
0,4

[
ar4

256

∣∣∣∣1

2
,

1

2
, 0, 0

]
, (5)

where Ci (i = 1, 2, 3, 4) denote integration constants, Jn and In are Bessel functions of nth
order with real, and imaginary arguments, respectively (and interconnected via well-known
relationship In(z) = Jn(iz) × e−i nπ

2 , z is a real or complex argument), while Meijer’s G-
functions are defined [13] by the following expression:

Gmn
pq

(
x

∣∣∣∣a1, . . . , an, an+1, . . . , ap

b1, . . . , bm, bm+1, . . . , bq

)

= 1

2π i

∫
γL


m
j=1�(bj + s)
n

j=1�(1 − aj − s)



p

j=n+1�(aj + s)

q

j=m+1�(1 − bj − s)
x−s ds, (6a)

where �(s) denote the gamma function and the integration contour lies between the poles of
�(1 − ai − s) and �(bi + s). Therefore, the Meijer functions in (5) specialize to

G
2,0
0,4

(
x

∣∣∣∣0, 0,
1

2
,

1

2

)
= 1

2π i

∫
γL

�(s)2

�
(

1
2 − s

)2 x−s ds, (6b)

and to

G
2,0
0,4

(
x

∣∣∣∣1

2
,

1

2
, 0, 0

)
= 1

2π i

∫
γL

�
(
s + 1

2

)2

�(1 − s)2
x−s ds, (6c)

respectively.
Similarly, application of the MAPLE 10 software package gave us the following result

for the same problem:

v(r) = C ′
1 · J0(

4
√

ar) + C ′
2 · Y0(

4
√

ar) + C ′
3 · J0(i

4
√

ar) + C ′
4 · Y0(i

4
√

ar), (7)

where a ≡ Ra
R4 , C ′

1, C
′
2, C

′
3, C

′
4 are again integration constants and functions Yν(z) are the

Bessel functions of second kind, sometimes also called Neumann functions (ν is a real
number, which may take both integer and non-integer values). It is an important feature of
Neumann functions that they have singularity at the zero value of argument. Solutions (5) and
(7) should be equivalent. Then, we present graphically our calculation results (figure 1).
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(a) (b)

Figure 1. Numerical presentation of real (Re) and imaginary (Im) parts of solutions of ODE (4)
by MATHEMATICA 5.2 (a) and MAPLE 10 (b) in the interval (0.01;4); for the sake of simplicity
all integration constants and a are taken to have unit value.

Figure 2. Graphical presentation of the real part of the exact solution of the ODE (4) realized by
the numerical method of MATHEMATICA 5.2 (r = 0.01..2). (The initial conditions were the next:
f (0.01) = 11 014.3; f ′(0.01) = −11.0137; f ′′(0.01) = −1101.36; f ′′′′(0.01) = 2.9938).

The curves above illustrate that the exact solutions obtained by two software packages
are identical.

The curves have shown in figures 2–5 are calculated by use of data indicated at the bottom
of the figures 2 and 3. All of them are related to velocity functions of the convective flow in
vertical cylindrical tubes.

It is obvious that the boundary conditions considered in this paper (i.e. the Dirichlet- and
Neumann-type conditions corresponding to vertical cylindrical tubes with insulating walls and
to be discussed below) can hardly be analysed by use of the general solution formulae (5),
(7). Particularly, the gradient of the temperature function (which can be calculated by use
of (3) via one-time integration of the velocity function) is expressed analytically (solution is
obtained by MAPLE 10) using Bessel-, and Struve-type special functions. This calculation
result is presented in the appendix (equation (A.1)).

In order to avoid such laboursome calculations, we simplify the ODE (4) using following
assumptions:

• In the region the nearby axis of the vertical cylinder, the slope of the velocity curve is very
small, leading to small values of the first, second and third derivatives of this function.
Then, taking large enough values for r in the proximity of the cylinder axis, the terms
2
r

· v′′′(r), 1
r2 v

′′(r), 1
r3 v

′(r)may tend separately to value zero.
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Figure 3. Vertical component of the velocity function in a vertical cylindrical tube (for K = 100,
K1 = 1, K2 = 1, K3 = 1, A = 1, 0,01 � r � 10).

Figure 4. Comparison between the exact (dashed line) and approximate (continuous line) solutions
of the ODE (4), i.e. there is a good agreement between the exact and numerical solution within
the given range (r = 0.01–0.5), which also presented by the error function in figure 4 in the same
range as above.

• In the vicinity of the cylinder wall, and close to the region, where the boundary layer
phenomena are enhanced (which are characterized by high values of the velocity gradients
in direction perpendicular to the groundflow [3]), but still far enough from the boundary
layer itself (where the previously mentioned velocity gradients have very large values),
the coefficients 1

r
, 1

r2 ,
1
r3 take small values due to r ≈ R and (at finite values of the relevant

first-, second- and third-order derivatives) may lead to negligibly small summarized values
of the last three terms on the left-hand side of equation (4).

These assumptions allow abandoning the last three terms on the left-hand side of (4).
Within the frame of the approximation applied, the MAPLE software package [11] gave us
a simple analytical new result for the velocity function in the vertical cylindrical tube as is
shown below:

v(r) = cosh(A · r) + K1 · cosh(A ·
√

K − r2) + K2 · cos(A · r) + K3 · cos(A ·
√

K − r2),

(8)
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Figure 5. Fitting error in the range (r = 0.01–2). (The calculation of error was the next: abs
(F (r) − f (r)/f (r)), where F = exact and f = approximate functions.)

where K1, K2, K3 and K are the integration constants, while the quantity A is a coefficient
emanating from the coefficient in the linear equation (2) and is defined as A = 4

√
a. This

result can easily be obtained without using any software. Then, formula (8) of the velocity
function can also be used for the calculation of the explicit form of the temperature perturbation
expression within the framework of applied linear approximation [3]. With a view to perform
the necessary subsequent calculations, the trigonometric, and hyperbolic functions having in
their arguments the expression A

√
K − r2 will be applied in equation (8) in the usual series

expansion forms, i.e.,

cos(A
√

K − r2) =
+∞∑
n=0

(−1)n
A2n

(2n)!
(K − r2)n, cosh(A

√
K − r2) =

+∞∑
n=0

A2n

(2n)!
(K − r2)n.

(9)

On the basis of (8), the velocity function can be drawn to present the final result graphically
(figure 3).

The velocity curve is presented in figure 3. It has an extremal (minimum) value and agrees
qualitatively with the velocity function profiles presented in [8] for cross sections of the tubes
with an elliptic and circle shape (our result presented in figure 3 corresponds to a half-space
of the fully developed buoyancy-induced flow in McBain’s paper (p 373)).

The comparison of symbolic/analytical solutions for the complete ODE (4) and its
asymptotically simplified form is given in figure 4.

It is clear from figure 5 that there is a very good agreement between the exact and
approximate solution till value 0.5 of the independent variable.

To obtain the full description of the convective flow problem examined, it is necessary to
solve the differential equation (3) and derive the expression for the temperature disturbance τ

too. The double integration of the general term in the series expansions (9) (by MAPLE) leads
to the appearance of hypergeometric functions in the series expansions, i.e. from equation (3)
we obtained directly

τ = −C

χ

(
cosh(A · r)

A2
− K2 · cos(A · r)

A2

+ K

+∞∑
n=0

[K1 + (−1)nK3]
A2n

(2n)!
· F

([− 1
2 ,−n − 1

]
,
[

1
2

]
, r2

K

)
2(n + 1)

)
. (10)
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In case of cylinders with perfectly insulating walls the velocity �v and the temperature
perturbation τ follow the next Dirichlet-, and Neumann-type boundary conditions,
respectively:

v(R) = 0, (11a)(
∂τ

∂r

)
r=R

= 0. (11b)

These boundary conditions lead to the reduction of the number of unknown integration
constants. However, firstly we exploit the meaning of the velocity function on the axis
of the vertical cylindrical tube v(0), i.e.,

v(0) = ch(0) + K1 cosh(A
√

K) + K2 + K3 cos(A
√

K), (12)

from which the integration constant K2 was immediately derived:

K2 = −K1 cosh(A
√

K) − K3 cos(A
√

K), (13)

because v(0) was taken here as the unit value of velocity. Application of the Dirichlet-type
boundary condition (11a) imposed on the velocity function gives directly

K1 · [
cosh(A

√
K − R2) − cosh(A

√
K) cos(AR)

]
+ K3 · [

cos(A
√

K − R2) − cos(A
√

K) cos(AR)
]

+ cosh(AR) = 0. (14)

For the relevant calculation of the Neumann-type boundary condition (11b), the following
relation for hypergeometric functions was used [14]:

d

dx
F(c; d; e; x) = cd

e
F (c + 1; d + 1; e + 1; x), (15)

which led to the expression of(
∂τ

∂r

)
r=R

≡ −sinh(AR) + K2 sin(AR)

+ AR

+∞∑
n=0

[K1 + (−1)nK3] · A2n

(2n)!
F

([
1

2
,−n

]
,

[
3

2

]
,
R2

K

)
= 0. (16)

Finally, from equations (14) and (16) we derived formulae

K1 =
cosh(AR) − β2

β1
sinh(AR)

α2 − β2

β1
α1

, K3 = sinh(AR)

β1
−

α1
[
cosh(AR) − β2

β1
sinh(AR)

]
α2β1 − β2α1

,

(17)

where the following abbreviations were used:

α1 = AR

+∞∑
n=0

A2n

(2n)!
F

([
1

2
,−n

]
,

[
3

2

]
,
R2

K

)
− cosh(A

√
K) · sin(AR),

β1 = AR

+∞∑
n=0

(−1)n
A2n

(2n)!
F

([
1

2
,−n

]
,

[
3

2

]
,
R2

K

)
− cos(A

√
K) · sin(AR),

α2 = cosh(A
√

K) cos(AR) − cosh(A
√

K − R2),

β2 = cos(A
√

K) cos(AR) − cos(A
√

K − R2).

(18)
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An unequivocal connection can be established between the integration constants K1, K3 and
K; K2 can also be expressed by them using equation (10), and all these relations include the
still unknown fourth integration constant K.

A further limit situation is represented by the cylinder surrounded by superficies made
from ideally perfect heat conducting material. This case is characterized by the Dirichlet-type
boundary condition τ(R) = 0, which is relevant for temperature fluctuation τ [3]. This
condition describes the case of ‘instantaneous’ heat absorption by the cylinder wall.

4. Conclusions

The fourth-order ordinary differential equation describing radial dependence of the velocity
function of convective flow in the cross section perpendicular to the axis of the vertical
cylinder is studied by the use of advanced symbolic calculation software packages. The
complete initial ordinary differential equation of fourth order originating from the Boussinesq
system of equations is solved directly and the solution is presented by two formulae via
Meijer-, Bessel- and Neumann-type special functions. The relevant solution of the simplified
linearized ordinary differential equation is given by simple cosine and hyperbolic cosine
functions allowing relatively the simple study of the imposed Dirichlet-, and Neumann-type
boundary conditions. The boundary conditions corresponding to the case of cylindrical tubes
with perfectly insulating walls made possible the direct determination of three integration
constants and only the remaining fourth one is taken as a parameter. As a direct continuation
of this work, application of the asymptotic series expansion techniques [16] to the special
functions appearing in solutions (5) and (7) may trace out new and fruitful research direction
in the general topic of convection instability problems.
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(OMFB-01436/2006)). R Cs acknowledges support of the National Scientific Foundation
of Hungary (T047132). The authors wish to thank Dr G Gyulai, Dr K Gottschalk and
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Appendix: the explicit form of the temperature gradient function

The one-time integration of the velocity function (7) with respect to the spatial coordinate r
leads to the following result:∫

v dr = C ′
1 · r

2
{2J0(

4
√

ar) + πHs0(
4
√

ar)J1(
4
√

ar) − πHs1(
4
√

ar)J0(
4
√

ar)}

+ C ′
2 · r

2
{2Y0(

4
√

ar) + πHs0(
4
√

ar)Y1(
4
√

ar) − πHs1(
4
√

ar)Y0(
4
√

ar)}

+ C ′
3 · r

2
{2J0(i

4
√

ar) + πHs0(i
4
√

ar)J1(i
4
√

ar) − πHs1(i
4
√

ar)J0(i
4
√

ar)}

+ C ′
4 · r

2
{2Y0(i

4
√

ar) + πHs0(i
4
√

ar)Y1(i
4
√

ar) − πHs1(i
4
√

ar)Y0(i
4
√

ar)},
(A.1)
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where the functions denoted by Hs0(
4
√

ar),Hs1(
4
√

ar),Hs0(i 4
√

ar),Hs1(i 4
√

ar) are the
so-called Struve functions, representing the solution functions of an inhomogeneous Bessel-
type ODE [15].
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